My Calculation

Engineering Calculation Sheet

| Page | 1 | |
| :--- | :--- | :--- | :--- |
| Calculation | of $\frac{2}{0}$ | |

Subject Reinhold-Spiri formula derivation based on
Prepared By \qquad Date 9-Oct-15 axisymmetric radial load on pipe lateral surface

This calculation was conducted in order to verify Reinhold-Spiri formula as a slip crushing load (F_{z}) based on axisymmetric wedge that generates axisymmetric radial load on pipe lateral surface. As the wedge slip bite on pipe, pipe shall be exposed to radial load. By using Lame equation for a thick wall cylinders, the axial and hoop stress on pipe ID can be estimated from radial stress acting on pipe OD. since radial stress as a function of axial load, the axial load at which VME stress at pipe ID reaches stress to cause pipe yielding can be determined.

Nomenclature

OD	Pipe outer diameter
ID	Pipe inner diameter
A_{1}	Pipe cross section area

$A_{L} \quad$ Pipe lateral surface area around slip bite
Sy Pipe yield material based on grade
$\mathrm{F}_{\mathrm{A}} \quad$ Pipe axial load
$F_{R} \quad$ Pipe radial load
L Slip length
a Slip angle
$\mu \quad$ Friction coefficient
$\mathrm{S}_{\mathrm{a}} \quad$ Axial stress
$\mathrm{S}_{\mathrm{r} \text { (ofi) }} \quad$ Radial stress (outer / inner)
$S_{h} \quad$ Hoop stress
$\mathrm{K} \quad$ Tranverse factor from axial stress $\left(\mathrm{S}_{\mathrm{a}}\right)$ to radial stress $\left(\mathrm{S}_{\mathrm{r}}\right)$
$\mathrm{F}_{\mathrm{Z}} \quad$ Slip crushing load
Let

$$
S_{\mathrm{ro}}=\left(\mathrm{K} \mathrm{~A}_{1} / A_{\mathrm{L}}\right) \mathrm{S}_{\mathrm{a}} \ldots-{ }^{\text {see }} \text { see page } 2 \text { for transverse factor derivation }
$$

From Lame equation for thick wall cylinder ($\mathrm{S}_{\mathrm{ri}}=0$ as radial stress on pipe ID vanish)

$$
\begin{aligned}
S_{\mathrm{h}} & =\left[\left(O D^{2}+I D^{2}\right) /\left(O D^{2}-I D^{2}\right)\right] \mathrm{S}_{\mathrm{r}}-\left[2 O D^{2} /\left(O D^{2}-I D^{2}\right)\right] \mathrm{S}_{\mathrm{ro}} \\
& =-\left[2 O D^{2} /\left(O D^{2}-I D^{2}\right) \mathrm{S}_{\mathrm{ro}}\right. \\
& =-\left[2 O D^{2} /\left(O D^{2}-I D^{2}\right)\right]\left[\left(K A_{1} / A_{\mathrm{L}}\right) S_{\mathrm{a}}\right]
\end{aligned}
$$

Apply VME stress equivalent on pipe ID.

$$
F_{z}=\left(S_{y} \cdot A_{1}\right)\left\{2 /\left[1+\left[\left[2 O D^{2} /\left(O D^{2}-I D^{2}\right)\right]\left(K A_{1} / A_{L}\right)\right]^{2}+\left(\left[1+2 O D^{2} /\left(O D^{2}-I D^{2}\right)\right]\left[\left(K A_{1} / A_{L}\right)\right)^{2}\right\}^{0.5}\right.\right.
$$

since

$$
\begin{aligned}
& A_{1}=\pi / 4\left(O D^{2}-I D^{2}\right) \\
& A_{L}=\pi O D L
\end{aligned}
$$

$$
\begin{aligned}
& F_{z}=\left(S_{y} \cdot A_{1}\right)\left\{2 /\left[1+\left[\left[2 O D^{2} /\left(O D^{2}-I D^{2}\right)\right]\left(K A_{1} / A_{L}\right)\right]^{2}+\left(\left[1+2 O D^{2} /\left(O D^{2}-I D^{2}\right)\right]\left[\left(K A_{1} / A_{L}\right)\right)^{2}\right\}^{0.5}\right.\right. \\
& =\left(S_{y} \cdot A_{1}\right)\left\{2 /[1+[K O D / 2 L)]^{2}+\left([1+(K O D / 2 L))^{2}\right\}^{0.5}\right. \\
& \text {-_- - }{ }^{[2]}
\end{aligned}
$$

$$
\begin{aligned}
& \left.S_{y}=\left\{\left(\mathrm{S}_{\mathrm{a}}-\mathrm{S}_{\mathrm{r}}\right)^{2}+\left(\mathrm{S}_{\mathrm{ri}}-\mathrm{S}_{\mathrm{h}}\right)^{2}+\left(\mathrm{S}_{\mathrm{h}}-\mathrm{S}_{\mathrm{a}}\right)^{2}\right] / 2\right\}^{0.5} \\
& \left.=\left\{\left(S_{\mathrm{a}}\right)^{2}+\left(\mathrm{S}_{\mathrm{h}}\right)^{2}+\left(\mathrm{S}_{\mathrm{h}}-\mathrm{S}_{\mathrm{a}}\right)^{2}\right] / 2\right\}^{0.5} \\
& \left.=\left\{\left(\mathrm{S}_{\mathrm{a}}\right)^{2}+\left(-\left[2 O D^{2} /\left(\mathrm{OD}^{2}-\mathrm{ID}^{2}\right)\right] \mathrm{S}_{\mathrm{ro}}\right)^{2}+\left(-\left[2 O D^{2} /\left(\mathrm{OD}^{2}-\mathrm{ID}^{2}\right)\right] \mathrm{S}_{\mathrm{ro}}-\mathrm{S}_{\mathrm{a}}\right)^{2}\right] / 2\right\}^{0.5} \\
& \left.=\left\{\left(S_{a}\right)^{2}+\left[-\left[2 O D^{2} /\left(O D^{2}-I D^{2}\right)\right]\left(K A_{1} / A_{L}\right) S_{a}\right]^{2}+\left(-\left[2 O D^{2} /\left(O D^{2}-I D^{2}\right)\right]\left(K A_{1} / A_{L}\right) S_{a}-S_{a}\right)^{2}\right] / 2\right\}^{0.5} \\
& \left.=\left\{\left(S_{a}\right)^{2}+\left[-\left[2 O D^{2} /\left(O D^{2}-I D^{2}\right)\right]\left(K A_{1} / A_{L}\right) S_{a}\right]^{2}+\left(-\left[2 O D^{2} /\left(O D^{2}-I D^{2}\right)\right]\left(K A_{1} / A_{L}\right) S_{a}-S_{a}\right)^{2}\right] / 2\right\}^{0.5} \\
& =\left\{S_{a}^{2}\left[1+\left[\left[2 O D^{2} /\left(O D^{2}-I D^{2}\right)\right]\left(K A_{1} / A_{L}\right)\right]^{2}+\left(\left[2 O D^{2} /\left(O D^{2}-I D^{2}\right)\right]\left[\left(K A_{1} / A_{L}\right)+1\right)^{2}\right] / 2\right\}^{0.5}\right. \\
& =S_{a}\left\{1+\left[\left[2 O D^{2} /\left(O D^{2}-I D^{2}\right)\right]\left(K A_{1} / A_{L}\right)\right]^{2}+\left(\left[1+2 O D^{2} /\left(O D^{2}-I D^{2}\right)\right]\left[\left(K A_{1} / A_{L}\right)\right)^{2}\right] / 2\right\}^{0.5} \\
& =\left(F_{z} / A_{1}\right)\left\{\left[1+\left[\left[2 O D^{2} /\left(O D^{2}-I D^{2}\right)\right]\left(K A_{1} / A_{L}\right)\right]^{2}+\left(\left[1+2 O D^{2} /\left(O D^{2}-I D^{2}\right)\right]\left[\left(K A_{1} / A_{L}\right)\right)^{2}\right] / 2\right\}^{0.5}\right.
\end{aligned}
$$

My Calculation

Engineering Calculation Sheet

| Page | 2 |
| :--- | :--- | :--- |
| Calculation | of $\frac{2}{006}$ |

Subject Reinhold-Spiri formula derivation based on \qquad Prepared By \qquad Date $\xrightarrow{9-O c t-15}$ axisymmetric radial load on pipe lateral surface

Transverse factor derivation

Free body diagram determination

$F_{R}+R_{1}+\mu R_{1}+F_{A}=0$

$$
F_{A}=R_{1} \cdot \sin \alpha+\mu R_{1} \cdot \cos \alpha
$$

for $\Sigma F_{Y}=0$
$R_{1} \cdot \cos \alpha=F_{R}+\mu R_{1} \cdot \sin \alpha \quad \quad---$
for $\Sigma F_{X}=0$
$F_{R}=R_{1} \cdot \cos \alpha-\mu \cdot R_{1} \cdot \sin \alpha$
$=R_{1} \cdot(\cos \alpha-\mu \cdot \sin \alpha)$
$R_{1}=F_{R} /(\cos \alpha-\mu \cdot \sin \alpha)$
$F_{A}=R_{1} \cdot \sin \alpha+\left(\mu \cdot R_{1}\right) \cdot \cos \alpha$
$=R_{1} \cdot(\sin \alpha+\mu \cdot \cos \alpha)$
$=\left[F_{R} /(\cos \alpha-\mu \cdot \sin \alpha)\right](\sin \alpha+\mu \cdot \cos \alpha)$
$=F_{R}[(\sin \alpha+\mu \cdot \cos \alpha) /(\cos \alpha-\mu \cdot \sin \alpha)]$
$=F_{R} / \cot (\alpha+\theta)$
$F_{R}=F_{A} \cdot \cot (\alpha+\theta) \quad \quad-\quad-\quad \cot (\alpha+\theta)$ known as transverse factor
$F_{R}=F_{A} . K$

$$
\begin{aligned}
S_{\mathrm{ro}} \cdot A_{\mathrm{L}} & =K \cdot S_{\mathrm{a}} \cdot A_{1} \\
S_{\mathrm{ro}} & =\left(K A_{1} / A_{L}\right) S_{a}
\end{aligned}
$$

Reference:

[1] SPE 13434 - Triaxial Load Capacity Diagrams Provide a New Approach to Casing and Tubing Design Analysis
[2] SPE 99074 - A Re-examination fo Drillpipe/Slip Mechanism
[3] SPE 80169 - Advanced Slip Crushing Consideration for Deepwater Drilling
[4] Machinery Handbook, $27^{\text {TH }}$ Edition

